

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS

SEXTO SEMINARIO DE QUIMICA

1. Se requiere producir 112L de O₂ en condiciones normales según:

 $2HgO \rightarrow 2Hg + O_2$

Los gramos necesarios de una muestra impura que contiene 60 % en peso de HgO (PF=216) son:

3600

2160

1296

1800

1450

½ kg de un mineral impuro que contiene carbonato de calcio (PF=100 uma) produce por descomposición térmica 1mol de CO₂ según: CaCO₃ → CaO + CO₂ Entonces el porcentaje de pureza del mineral, es:

A) 30

- B) 70
- C) 60
- D) 40
- E) 50
- 3. 625 gramos de carbonato de cinc (PF=125) impuro, fueron empleados en la obtención de 176 g de CO₂ (PF=44).¿Cuál fue el % de pureza del ZnCO₃ inicial?

 $ZnCO_3 \rightarrow ZnO + CO_2$

- A) 20
- B) 40
- C) 80
- D) 60
- E) 90
- 4. Según:

 $4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2$

2SO₂+O₂→ 2SO₃

SO₃+H₂O→ H₂SO₄

Los gramos de H₂SO4 (PM: 98uma) que se puede obtener a partir de 400g de pirita son: Dato: La pirita es un mineral que contiene 60% en peso de FeS₂(PF: 120 uma)

- 98,0
- 392,0
 - 1088,8
 - 784,0
 - 196.0

5. Para la reacción:

 $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$. Si se ponen en contacto para que reaccionen 20 moles de cada reactante, la afirmación correcta es:

- A) 5 moles de O₂ están en exceso
- B) Se forman 30 moles de agua
- C) 68 g de NH₃ (PM=17) están en exceso
- D) Se forman 20 moles de NO
- E)160 gramos de O_2 (PM=32) están en exceso
- 6. Si la combustión del propano tiene un rendimiento del 70 %, entonces los litros de CO₂ en condiciones normales desprendidos a partir de 4,4 g de propano C₃H₈ (PF=44) son:

6,72

4,70

9,6

0,21

2,8

7. Si a partir de 54 g de N_2O_5 (PF=108) sólo se obtiene 0,25 moles de HNO_3 según la reacción N_2O_5 + H_2O \rightarrow 2HNO₃, entonces el rendimiento porcentual de la reacción es:

12,5 %

- 25 %
- 50 %

75 %

87,5 %

8. Según la reacción siguiente:

$$SO_2 + O_2 \longrightarrow SO_3$$

Si se combinan 40 g de SO_2 y 25 g de O_2 . Determine el % del reactivo en exceso que queda sin reaccionar. (Masa atómica: S=32; O=16)

- 30
- 40
- 50 60
- 70
- 9. El volumen (en litros) ocupado por 260g de gas acetileno (PF = 26uma) a 27°C y 166kPa de presión, es:

Dato: R = 8,3
$$\frac{\text{kPa.L}}{\text{mol.K}}$$

A) 10

B) 224

C) 150

D) 390

E) 424

10. Los litros de H₂ a 27 °C y 83 kPa que se forman al poner en contacto para que reaccionen 280 gramos de Fe (PA=56) con 8 moles de HCl según la ecuación:

2Fe + 6HCl \rightarrow 2FeCl₃ + 3H₂, son:

120

225

150

89,2

240

11. Si la combustión del propano tiene un rendimiento de 70%, entonces los litros de CO_2 a 166 KPa y 300K, desprendidos a partir de 4.4g de propano C_3H_8 (PF=44), R=8,3 KPa.L/mol.K.

A) 0.3

B) 0,21

C) 4,7

D) 4,5

E) 3,15

12. Indicar verdadero (V)o falso (F) según corresponda para los compuestos orgánicos:

() La mayoría son insolubles en agua

()Son termolábiles, es decir se descomponen fácilmente con el calor.

() Tiene altos puntos de fusión y ebullición

() Reaccionan rápidamente.

13. Lo correcto es:

A) En la naturaleza el carbono se puede encontrar solo en forma pura.

B) Los elementos organógenos, son Na y K

C) El H₂CO₃ y el CO₂ son ejemplos de compuestos orgánicos

D) Los compuestos orgánicos son solubles en alcohol, gasolina, benceno, etc

E) El carbono es trivalente.

14. Determine la fórmula global del siguiente compuesto:

F.G=.....

15. La fórmula global de la molécula cuya estructura se muestra es:

 $C_{6}H_{10}$ $C_{6}H_{8}$ $C_{8}H_{10}$ $C_{8}H_{12}$ $C_{8}H_{16}$

16. Indique para cada caso el tipo de hibridación que tiene el átomo de carbono:

R-COOH R-CO-R' R-CHO R-CN CH₂=CH₂ R-CH₂OH....

17. El número de carbonos secundarios que hay en el 3-etil-2,2-dimetilheptano es:

A) 1

B) 2

C) 3

D) 4 E) 5

18. El número de carbonos secundarios y terciarios respectivamente, que hay en el siguiente compuesto:

A) 3 y 2

B) 3 y 3

C) 3 y 5

D) 2 y 2

E) 2 y 3

19. El número de enlaces sigma(σ) y pi(π) en la molécula son:

$$CH_3$$
 $CH_2 = CH - CH_2 - CH - CH_2 - CH = CH$

A) 19 y 4

B) 21 y 2

C) 20 y 3

D) 18 y 5

E) 22 y 6

20. Identifique el grupo funcional y familia a la que pertenece cada compuesto

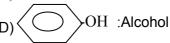
Compuesto	Grupo funcional	Familia
	hidroxilo	alcohol
ОН		
NH ₂		
СООН		
H C O R		
O II R ^{/C} \OR'		
R1—C O N—R2		
—ОН		
CH₃-O-CH₃		

21. Con respecto a los compuestos cuyas fórmulas de líneas se muestran, señale la secuencia verdadero(V)o falso(F)correcta:

()) Son	isómeros	de	cadenas
-----	-------	----------	----	---------

•						
(,) Tienen	las	mismas	pro	piedades

() Tienen las mismas fórmulas globales


- A) FFV
- B) VFF
- C) VFV
- D) VVV
- E) FVF

22. Relacione las dos columnas:

A) CH₃-CH₂-COOH :Ester

B) CH₃-CH₂-CH₂-OH: Aldehido

C) CH₃-CH₂-NH₂: Amida

E) CH₃-CH₂-O-CH₃: Éter

23. Indicar si los siguientes pares de compuestos son isómeros y de qué tipo:

CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ y CH ₃ C(CH ₃) ₂ CH ₃				
CH₃CH=CHCH₃ y				
CH₃CH₂CH₂OH y CH₃COCH₃				
CH ₃ CH=CHCH ₃ y CH ₂ =CH-CH ₂ -CH ₃				
CH ₃ CH ₂ -O-CH ₃ y CH ₃ CHOH-CH ₃				
CH ₂ =CHCH ₃				

RESPUESTAS

•	LOI GEGIAG						
	1	Α	11	E	21	-	
	2	D	12	-	22	Е	
	3	С	13	D			
	4	В	14	1			
	5	С	15	C			
	6	В	16	-			
	7	В	17	С			
	8	D	18	В			
	9	С	19	С			
	10	Α	20	-			